
Chapter

16 Network Flow and Matching

Yellowstone Falls, 1941. Ansel Adams. U.S. gov-

ernment image. U.S. National Archives and

Records Administration.

Contents

16.1 Flows and Cuts . 445

16.2 Maximum Flow Algorithms 452

16.3 Maximum Bipartite Matching 458

16.4 Baseball Elimination . 460

16.5 Minimum-Cost Flow . 462

16.6 Exercises . 469

444 Chapter 16. Network Flow and Matching

Consider a computer network modeled by a directed graph G in which each

vertex represents a computer, each edge (u, v) represents a one-way communica-

tion channel from computer u to computer v, and the weight of each edge (u, v)
represents the bandwidth of the channel, that is, the maximum number of bytes

that can be sent from u to v in one second. Suppose that we would like to send a

high-bandwidth streaming media connection from some computer s in G to some

computer t in G, with as high a bandwidth as possible, possibly even higher than

the maximum bandwidth of any single link in our network. This might seem im-

possible at first, but it might actually be possible if we can divide this media stream

into lots of packets and route these packets through multiple paths in the network.

We can formulate this problem by imagining that each edge in G represents

a “pipe” that can transport some commodity, with the weight of that edge repre-

senting the maximum amount it can transport per unit time interval. The optimiza-

tion problem is then known as the maximum flow problem, where we are given

a weighted directed graph and asked to find a way of transporting the maximum

amount of the given commodity from some vertex s, called the source, to some

vertex t, called the sink. (See Figure 16.1.)

Incidentally, the maximum flow problem is closely related to the problem of

finding the maximum way of matching vertices of one type in a graph with vertices

of another type. We therefore also study the maximum matching problem, showing

how the maximum flow problem can be used to solve it efficiently.

Sometimes we have many different maximum flows. Although all are maxi-

mum in terms of how much flow they produce, these flows may in fact be different

in how much they cost. Thus, in this chapter, we also study methods for computing

maximum flows that are of minimum cost, when there are many different maximum

flows and we have some way of measuring their relative costs.

source

sink

alpha
beta

gamma

delta

theta
omega

Figure 16.1: A flow in a graph representing a computer network, with the bandwidth

of thick edges being 4 MB/s, medium edges being 2 MB/s, and thin edges being

1 MB/s. We indicate the flow using icons, where each folder corresponds to one

MB/s going through the channel. Note that the total amount of flow sent from the

source to the sink (6 MB/s) is not maximum. Indeed, one additional MB/s can be

pushed from the source to gamma, from gamma to delta, and from delta to the sink.

After this extra flow is added, the total flow will be maximum.

16.1. Flows and Cuts 445

16.1 Flows and Cuts

The above example illustrates the rules that a legal flow must obey. In order to

precisely say what these rules are, let us carefully define what we mean by a flow.

Flow Networks

A flow network N consists of the following:

• A connected directed graph G with nonnegative integer weights on the edges,

where the weight of an edge e is called the capacity c(e) of e
• Two distinguished vertices, s and t, of G, called the source and sink, respec-

tively, such that s has no incoming edges and t has no outgoing edges.

Given such a labeled graph, the challenge is to determine the maximum amount

of some commodity that can be pushed from s to t under the constraint that the

capacity of an edge determines the maximum flow that can go along that edge.

(See Figure 16.2.)

7

s

v
1

v
2

v
3

v
4

t

v
5

2

6

8
6

9

3

3

51

5

Figure 16.2: A flow network, N . Each edge e of N is labeled with its capacity,

c(e).

Of course, if we wish some commodity to flow from s to t, we need to be more

precise about what we mean by a “flow.” A flow for network N is an assignment of

an integer value f(e) to each edge e of G that satisfies the following properties:

• For each edge e of G,

0 ≤ f(e) ≤ c(e) (capacity rule).

• For each vertex v of G distinct from the source s and the sink t
∑

e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e) (conservation rule),

where E−(v) and E+(v) denote the sets of incoming and outgoing edges

of v, respectively.

446 Chapter 16. Network Flow and Matching

In other words, a flow must satisfy the edge capacity constraints and must, for

every vertex v other than s and t, have the total amount of flow going out of v equal

to the total amount of flow coming into v. Each of the above rules is satisfied, for

example, by the flow illustrated in Figure 16.3.

3/7

s

v
1

v
2

v
3

v
4

t

v
5

2/2

4/6

4/85/6

4/9

1/3

2/3

2/51/1

2/5

Figure 16.3: A flow, f (of value |f | = 10), for the flow network N of Figure 16.2.

The quantity f(e) is called the flow of edge e. The value of a flow f , which we

denote by |f |, is equal to the total amount of flow coming out from the source s:

|f | =
∑

e∈E+(s)

f(e).

It is easy to show that the flow value is also equal to the total amount of flow going

into the sink t (see Exercise R-16.1):

|f | =
∑

e∈E−(t)

f(e).

That is, a flow specifies how some commodity is pushed out from s, through the

network N , and finally into the sink t. A maximum flow for flow network N is a

flow with maximum value over all flows for N (see Figure 16.4). Since a maximum

flow is using a flow network most efficiently, we are most interested in methods for

computing maximum flows.

3/7

s

v
1

v
2

v
3

v
4

t

v
5

2/2

6/6

6/86/6

6/9

0/3

2/3

4/51/1

5/5

Figure 16.4: A maximum flow f∗ (of value |f∗| = 14) for the flow network N of

Figure 16.2.

16.1. Flows and Cuts 447

16.1.1 Cuts

It turns out that flows are closely related to another concept, known as cuts. Intu-

itively, a cut is a division of the vertices of a flow network N into two sets, with s
on one side and t on the other. Formally, a cut of N is a partition χ = (Vs, Vt) of

the vertices of N such that s ∈ Vs and t ∈ Vt. An edge e of N with origin u ∈ Vs

and destination v ∈ Vt is said to be a forward edge of cut χ. An edge with origin

in Vt and destination in Vs is said to be a backward edge. We envision a cut as a

separation of s and t in N done by cutting across edges of N , with forward edges

going from s’s side to t’s side and backward edges going in the opposite direction.

(See Figure 16.5.)

7

s

v
1

v
2

v
3

v
4

t

v
5

2

6

86

9

3

3

51

5

χ
1

χ
2

(a)

7

s

v
1

v
2

v
3

v
4

t

v
5

2

6

86

9

3

3

51

5

χ

(b)

Figure 16.5: (a) Two cuts, χ1 (on the left) and χ2 (on the right), in the flow network

N of Figure 16.2. These cuts have only forward edges and their capacities are

c(χ1) = 14 and c(χ2) = 18. Cut χ1 is a minimum cut for N . (b) A cut χ in N
with both forward and backward edges. Its capacity is c(χ) = 22.

448 Chapter 16. Network Flow and Matching

Given a flow f for N , the flow across cut χ, denoted f(χ), is equal to the sum

of the flows in the forward edges of χ minus the sum of the flows in the backward

edges of χ. That is, f(χ) is the net amount of commodity that flows from s’s side

of χ to t’s side of χ. The following lemma shows an interesting property of f(χ).

Lemma 16.1: Let N be a flow network, and let f be a flow for N . For any cut χ
of N , the value of f is equal to the flow across cut χ, that is, |f | = f(χ).

Proof: Consider the sum

F =
∑

v∈Vs

⎛

⎝

∑

e∈E+(v)

f(e) −
∑

e∈E−(v)

f(e)

⎞

⎠ .

By the conservation rule, for each vertex v of Vs distinct from s, we have that
∑

e∈E+(v) f(e) −
∑

e∈E−(v) f(e) = 0. Thus, F = |f |.
On the other hand, for each edge e that is not a forward or a backward edge of

cut χ, the sum F contains both the term f(e) and the term −f(e), which cancel

each other, or neither the term f(e) nor the term −f(e). Thus, F = f(χ).

The above theorem shows that no matter where we cut a flow network to sepa-

rate s and t, the flow across that cut is equal to the flow for the entire network. The

capacity of cut χ, denoted c(χ), is the sum of the capacities of the forward edges

of χ (note that we do not include the backward edges). The next lemma shows that

a cut capacity c(χ) is an upper bound on any flow across χ.

Lemma 16.2: Let N be a flow network, and let χ be a cut of N . Given any flow f
for N , the flow across cut χ does not exceed the capacity of χ, that is, f(χ) ≤ c(χ).

Proof: Denote with E+(χ) the forward edges of χ, and with E−(χ) the back-

ward edges of χ. By the definition of f(χ), we have

f(χ) =
∑

e∈E+(χ)

f(e) −
∑

e∈E−(χ)

f(e).

Dropping nonpositive terms from the above sum, we obtain the simplified condi-

tion, f(χ) ≤
∑

e∈E+(χ) f(e). By the capacity rule, for each edge e, f(e) ≤ c(e).
Thus, we have

f(χ) ≤
∑

e∈E+(χ)

c(e) = c(χ).

By combining Lemmas 16.1 and 16.2, we obtain the following important result

relating flows and cuts.

Theorem 16.3: Let N be a flow network. Given any flow f for N and any cut χ
of N , the value of f does not exceed the capacity of χ, that is, |f | ≤ c(χ).

In other words, given any cut χ for a flow network N , the capacity of χ is an

upper bound on any flow for N . This upper bound holds even for a minimum cut of

16.1. Flows and Cuts 449

N , which is a cut with minimum capacity, taken over all cuts of N . In the example

of Figure 16.5, χ1 is a minimum cut.

16.1.2 Residual Capacity and Augmenting Paths

Theorem 16.3 implies that the value of a maximum flow is no more than the ca-

pacity of a minimum cut. We will show in this section that these two quantities

are actually equal. In the process, we will outline an approach for constructing a

maximum flow.

Residual Capacity

In order to prove that a certain flow f is maximum, we need some way of showing

that there is absolutely no more flow that can possibly be “squeezed” into f . Using

the related concepts of residual capacity and augmenting paths, discussed next, we

can provide just such a proof for when a flow f is maximum.

Let N be a flow network, which is specified by a graph G, capacity function

c, source s, and sink t. Furthermore, let f be a flow for N . Given an edge e of G
directed from vertex u to vertex v, the residual capacity from u to v with respect

to the flow f , denoted ∆f (u, v), is defined as

∆f (u, v) = c(e) − f(e),

and the residual capacity from v to u is defined as

∆f (v, u) = f(e).

Intuitively, the residual capacity defined by a flow f is any additional capacity that

f has not fully taken advantage of in “pushing” its flow from s to t.
Let π be a path from s to t that is allowed to traverse edges in either the forward

or backward direction, that is, we can traverse the edge e = (u, v) from its origin

u to its destination v or from its destination v to its origin u. Formally, a forward

edge of π is an edge e of π such that, in going from s to t along path π, the origin

of e is encountered before the destination of e. An edge of π that is not forward is

said to be a backward edge. Let us extend our definition of residual capacity to an

edge e in π traversed from u to v, so that ∆f (e) = ∆f (u, v). In other words,

∆f (e) =

{

c(e) − f(e) if e is a forward edge

f(e) if e is a backward edge.

That is, the residual capacity of an edge e going in the forward direction is the

additional capacity of e that f has yet to consume, but the residual capacity in the

opposite direction is the flow that f has consumed (and could potentially “give

back” if that allows for another flow of higher value).

450 Chapter 16. Network Flow and Matching

Augmenting Paths

The residual capacity, ∆f (π), of a path π is the minimum residual capacity of its

edges. That is,

∆f (π) = min
e∈π

∆f (e).

This value is the maximum amount of additional flow that we can possibly “push”

down the path π without violating a capacity constraint. An augmenting path for

flow f is a path π from the source s to the sink t with nonzero residual capacity,

that is, for each edge e of π,

• f(e) < c(e) if e is a forward edge

• f(e) > 0 if e is a backward edge.

We show in Figure 16.6 an example of an augmenting path.

5/8

s

v
1

v
2

v
3

v
4

t

v
5

2/4

4/9

3/83/7

3/3

0/3

3/3

2/53/6

2/3

(a)

5/8

s

v
1

v
2

v
3

v
4

t

v
5

4/4

6/9

3/85/7

3/3

2/3

3/3

2/51/6

2/3

(b)

Figure 16.6: Example of an augmenting path: (a) network N , flow f , and an aug-

menting path π drawn with thick edges ((v1, v3) is a backward edge); (b) flow f ′

obtained from f by pushing ∆f (π) = 2 units of flow from s to t along path π.

16.1. Flows and Cuts 451

As shown by the following lemma, we can always add the residual capacity of

an augmenting path to an existing flow and get another valid flow.

Lemma 16.4: Let π be an augmenting path for flow f in network N . There exists

a flow f ′ for N of value |f ′| = |f | + ∆f (π).

Proof: We compute the flow f ′ by modifying the flow of the edges of π:

f ′(e) =

{

f(e) + ∆f (π) if e is a forward edge

f(e) − ∆f (π) if e is a backward edge.

Note that we subtract ∆f (π) if e is a backward edge, for we are subtracting flow on

e already taken by f in this case. In any case, because ∆f (π) ≥ 0 is the minimum

residual capacity of any edge in π, we will violate no capacity constraint on a

forward edge by adding ∆f (π) nor will we go below zero flow on any backward

edge by subtracting ∆f (π). Thus, f ′ is a valid flow for N , and the value of f ′

is |f | + ∆f (π).

By Lemma 16.4, the existence of an augmenting path π for a flow f implies that

f is not maximum. Also, given an augmenting path π, we can modify f to increase

its value by pushing ∆f (π) units of flow from s to t along path π, as shown in the

proof of Lemma 16.4.

What if there is no augmenting path for a flow f in network N? In this case,

we have that f is a maximum flow, as stated by the following lemma.

Lemma 16.5: If a network N does not have an augmenting path with respect to a

flow f , then f is a maximum flow. Also, there is a cut χ of N such that |f | = c(χ).

Proof: Let f be a flow for N , and suppose there is no augmenting path in N
with respect to f . We construct from f a cut χ = (Vs, Vt) by placing in set Vs all

the vertices v, such that there is a path from the source s to vertex v consisting of

edges of nonzero residual capacity. Such a path is called an augmenting path from

s to v. Set Vt contains the remaining vertices of N . Since there is no augmenting

path for flow f , the sink t of N is in Vt. Thus, χ = (Vs, Vt) satisfies the definition

of a cut.

By the definition of χ, each forward edge and backward edge of cut χ has zero

residual capacity, that is,

f(e) =

{

c(e) if e is a forward edge of χ
0 if e is a backward edge of χ.

Thus, the capacity of χ is equal to the value of f . That is,

|f | = c(χ).

By Theorem 16.3, we have that f is a maximum flow.

As a consequence of Theorem 16.3 and Lemma 16.5, we have the following:

Theorem 16.6 (The Max-Flow, Min-Cut Theorem): The value of a maximum

flow is equal to the capacity of a minimum cut.

452 Chapter 16. Network Flow and Matching

16.2 Maximum Flow Algorithms

In this section, we discuss two maximum flow algorithms in this section, starting

with a classic algorithm, due to Ford and Fulkerson.

16.2.1 The Ford-Fulkerson Algorithm

The main idea of the Ford-Fulkerson algorithm is to incrementally increase the

value of a flow in stages, where at each stage some amount of flow is pushed along

an augmenting path from the source to the sink. Initially, the flow of each edge

is equal to 0. At each stage, an augmenting path π is computed and an amount

of flow equal to the residual capacity of π is pushed along π, as in the proof of

Lemma 16.4. The algorithm terminates when the current flow f does not admit an

augmenting path. Lemma 16.5 guarantees that f is a maximum flow in this case.

We provide a pseudocode description of the Ford-Fulkerson solution to the

problem of finding a maximum flow in Algorithm 16.7.

Algorithm MaxFlowFordFulkerson(N):

Input: Flow network N = (G, c, s, t)
Output: A maximum flow f for N

for each edge e ∈ N do

f(e) ← 0
stop ← false

repeat

traverse G starting at s to find an augmenting path for f
if an augmenting path π exists then

// Compute the residual capacity ∆f (π) of π
∆ ← +∞
for each edge e ∈ π do

if ∆f (e) < ∆ then

∆ ← ∆f (e)
for each edge e ∈ π do // push ∆ = ∆f (π) units along π

if e is a forward edge then

f(e) ← f(e) + ∆
else

f(e) ← f(e) − ∆ // e is a backward edge

else

stop ← true // f is a maximum flow

until stop

Algorithm 16.7: The Ford-Fulkerson algorithm.

16.2. Maximum Flow Algorithms 453

We visualize the Ford-Fulkerson algorithm in Figure 16.8.

source

sink

alpha

gamma delta

thetaomega

0/1

0/1

0/2

0/4

0/2

0/4

0/2 0/1

0/1

0/4

0/1

0/2

beta

0/2
source

sink

alpha

gamma delta

thetaomega

0/1

0/1

0/2

1/4

1/2

0/4

1/2 0/1

1/1

0/4

0/1

0/2

beta

0/2

(a) (b)

source

sink

alpha

gamma delta

thetaomega

0/1

0/1

0/2

2/4

2/2

1/4

1/2 0/1

1/1

0/4

0/1

0/2

beta

1/2
source

sink

alpha

gamma delta

thetaomega

0/1

0/1

2/2

2/4

0/2

3/4

1/2 0/1

1/1

2/4

0/1

2/2

beta

1/2

(c) (d)

source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

3/4

0/2

3/4

1/2 1/1

0/1

2/4

0/1

2/2

beta

1/2
source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

3/4

1/2

4/4

1/2 1/1

0/1

1/4

1/1

2/2

beta

2/2

(e) (f)

source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

4/4

2/2

4/4

2/2 1/1

1/1

1/4

1/1

2/2

beta

2/2
source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

4/4

2/2

4/4

2/2 1/1

1/1

1/4

1/1

2/2

beta

2/2

(g) (h)

Figure 16.8: Example execution of the Ford-Fulkerson algorithm on the flow net-

work of Figure 16.1. Augmenting paths are drawn with thick lines.

454 Chapter 16. Network Flow and Matching

Implementation Details

There are important implementation details for the Ford-Fulkerson algorithm that

impact how we represent a flow and how we compute augmenting paths. Repre-

senting a flow is actually quite easy. We can label each edge of the network with

an attribute representing the flow along that edge. To compute an augmenting path,

we use a specialized traversal of the graph G underlying the flow network. Such a

traversal is a simple modification of either a DFS traversal (Section 13.2) or a BFS

traversal (Section 13.3), where instead of considering all the edges incident on the

current vertex v, we consider only the following edges:

• Outgoing edges of v with flow less than the capacity

• Incoming edges of v with nonzero flow.

Alternatively, the computation of an augmenting path with respect to the current

flow f can be reduced to a simple path-finding problem in a new directed graph Rf

derived from G. The vertices of Rf are the same as the vertices of G. For each

ordered pair of adjacent vertices u and v of G, we add a directed edge from u to

v if ∆f (u, v) > 0. Graph Rf is called the residual graph with respect to flow f .

An augmenting path with respect to flow f corresponds to a directed path from s
to t in the residual graph Rf . This path can be computed by a DFS traversal of Rf

starting at the source.

Analyzing the Ford-Fulkerson Algorithm

The analysis of the running time of the Ford-Fulkerson algorithm is a little tricky.

This is because the algorithm does not specify the exact way to find augmenting

paths and, as we shall see, the choice of augmenting path has a major impact on the

algorithm’s running time.

Let n and m be the number of vertices and edges of the flow network, respec-

tively, and let f∗ be a maximum flow. Since the graph underlying the network is

connected, we have that n ≤ m + 1. Note that each time we find an augment-

ing path we increase the value of the flow by at least 1, since edge capacities and

flows are integers. Thus, |f∗|, the value of a maximum flow, is an upper bound

on the number of times the algorithm searches for an augmenting path. Also note

that we can find an augmenting path by a simple graph traversal, such as a DFS or

BFS traversal, which takes O(m) time (see Theorems 13.13 and 13.15, and recall

that n ≤ m + 1). Thus, we can bound the running time of the Ford-Fulkerson

algorithm as being at most O(|f∗|m). As illustrated in Figure 16.9, this bound can

actually be attained for some choices of augmenting paths. We conclude that the

Ford-Fulkerson algorithm is a pseudo-polynomial-time algorithm (Section 12.6),

since its running time depends on both the size of the input and also the value of a

numeric parameter. Thus, the time bound of the Ford-Fulkerson algorithm can be

quite slow if |f∗| is large and augmenting paths are chosen poorly.

16.2. Maximum Flow Algorithms 455

s t

x

y

0/1,000,000

0/1

0/1,000,000

0/1,000,000

0/1,000,000

ts

x

y

0/1,000,000

1/1

0/1,000,000

1/1,000,000

1/1,000,000

Finding an augmenting path Augmenting the �ow

(2,000,000 iterations total)

s t

x

y

0/1,000,000

1/1

0/1,000,000

1/1,000,000

1/1,000,000

ts

x

y

1/1,000,000

0/1

1/1,000,000

1/1,000,000

1/1,000,000

Figure 16.9: An example of a network for which the standard Ford-Fulkerson algo-

rithm runs slowly. If the augmenting paths chosen by the algorithm alternate be-

tween (s, x, y, t) and (s, y, x, t), then the algorithm will make a total of 2, 000, 000
iterations, even though two iterations would have sufficed.

16.2.2 The Edmonds-Karp Algorithm

The Edmonds-Karp algorithm is a variation of the Ford-Fulkerson algorithm. It

uses a simple technique for finding good augmenting paths that results in a faster

running time. This technique is based on the notion of being “more greedy” in our

application of the greedy method to the maximum flow problem. Namely, at each

iteration, we choose an augmenting path with the smallest number of edges, which

can be easily done in O(m) time by a modified BFS traversal. We will show that

with these Edmonds-Karp augmentations, the number of iterations is no more than

nm, which implies an O(nm2) running time for the Edmonds-Karp algorithm.

We begin by introducing some notation. We call the length of a path π the

number of edges in π. Let f be a flow for network N . Given a vertex v, we denote

with df (v) the minimum length of an augmenting path with respect to f from the

source s to vertex v, and call this quantity the residual distance of v with respect

to flow f . The following discussion shows how residual distance of each vertex

impacts the running time of the Edmonds-Karp algorithm.

456 Chapter 16. Network Flow and Matching

Performance of the Edmonds-Karp Algorithm

We begin our analysis by noting that residual distance is nondecreasing over a

sequence of Edmonds-Karp augmentations.

Lemma 16.7: Let g be the flow obtained from flow f with an augmentation along

a path π of minimum length. Then, for each vertex v,

df (v) ≤ dg(v).

Proof: Suppose there is a vertex violating the above inequality. Let v be such a

vertex with smallest residual distance with respect to g. That is,

df (v) > dg(v) (16.1)

and

dg(v) ≤ dg(u), for each u such that df (u) > dg(u). (16.2)

Consider an augmenting path γ of minimum length from s to v with respect to

flow g. Let u be the vertex immediately preceding v on γ, and let e be the edge of

γ with endpoints u and v (see Figure 16.10). By the above definition, we have

∆g(u, v) > 0. (16.3)

Also, since u immediately precedes v in shortest path, γ, we have

dg(v) = dg(u) + 1. (16.4)

Finally, by (16.2) and (16.4), we have

df (u) ≤ dg(u). (16.5)

We now show that ∆f (u, v) = 0. Indeed, if we had ∆f (u, v) > 0, we could

go from u to v along an augmenting path with respect to flow f . This would imply

df (v) ≤ df (u) + 1
≤ dg(u) + 1 by (16.5)

= dg(v) by (16.4),

thus contradicting (16.1).

Since ∆f (u, v) = 0 and, by (16.3), ∆g(u, v) > 0, the augmenting path π,

which produces g from f , must traverse the edge e from v to u (see Figure 16.10).

Hence,

df (v) = df (u) − 1 because π is a shortest path

≤ dg(u) − 1 by (16.5)

≤ dg(v) − 2 by (16.4)

< dg(v).

Thus, we have obtained a contradiction with (16.1), which completes the proof.

Intuitively, Lemma 16.7 implies that each time we do an Edmonds-Karp aug-

mentation, the residual distance from s to any vertex v can only increase or stay the

same. This fact gives us the following.

16.2. Maximum Flow Algorithms 457

es

u

t

v

Figure 16.10: Illustration of the proof of Lemma 16.7.

Lemma 16.8: When executing the Edmonds-Karp algorithm on a network with

n vertices and m edges, the number of flow augmentations is no more than nm.

Proof: Let fi be the flow in the network before the ith augmentation, and let πi be

the path used in such augmentation. We say that an edge e of πi is a bottleneck for

πi if the residual capacity of e is equal to the residual capacity of πi. Clearly, every

augmenting path used by the Edmonds-Karp algorithm has at least one bottleneck.

Consider a pair of vertices u and v joined by an edge e, and suppose that edge

e is a bottleneck for two augmenting paths πi and πk, with i < k, that traverse e
from u to v. The above assumptions imply each of the following:

• ∆fi
(u, v) > 0

• ∆fi+1
(u, v) = 0

• ∆fk
(u, v) > 0.

Thus, there must be an intermediate jth augmentation, with i < j < k whose

augmenting path πj traverses edge e from v to u. We therefore obtain

dfj
(u) = dfj

(v) + 1 (because πj is a shortest path)

≥ dfi
(v) + 1 (by Lemma 16.7)

≥ dfi
(u) + 2 (because πi is a shortest path).

Since the residual distance of a vertex is always less than the number of ver-

tices n, each edge can be a bottleneck at most n times during the execution of the

Edmonds-Karp algorithm (n/2 times for each of the two directions in which it can

be traversed by an augmenting path). Hence, the overall number of augmentations

is no more than nm.

Since a single flow augmentation can be done in O(m) time using a modified

BFS strategy, we can summarize the above discussion as follows.

Theorem 16.9: Given a flow network with n vertices and m edges, the Edmonds-

Karp algorithm computes a maximum flow in O(nm2) time.

458 Chapter 16. Network Flow and Matching

16.3 Maximum Bipartite Matching

A problem that arises in a number of important applications is the maximum bi-

partite matching problem. In this problem, we are given a connected undirected

graph with the following properties:

• The vertices of G are partitioned into two sets, X and Y .

• Every edge of G has one endpoint in X and the other endpoint in Y .

Such a graph is called a bipartite graph. A matching in G is a set of edges that

have no endpoints in common—such a set “pairs” up vertices in X with vertices

in Y so that each vertex has at most one “partner” in the other set. The maximum

bipartite matching problem is to find a matching with the greatest number of edges

(over all matchings).

Example 16.10: Let G be a bipartite graph where the set X represents a group of

young men and the set Y represents a group of young women, who are all together

at a community dance. Let there be an edge joining x in X and y in Y if x and y
are willing to dance with one another. A maximum matching in G corresponds to a

largest set of compatible pairs of men and women who can all be happily dancing

at the same time.

Example 16.11: Let G be a bipartite graph where the set X represents a group of

college courses and the set Y represents a group of classrooms. Let there be an edge

joining x in X and y in Y if, based on its enrollment and audiovisual needs, the

course x can be taught in classroom y. A maximum matching in G corresponds to a

largest set of college courses that can be taught simultaneously without conflicting.

These two examples provide a small sample of the kinds of applications that

the maximum bipartite matching problem can be used to solve. Fortunately, there

is a simple way of solving the maximum bipartite matching problem.

Reduction to the Maximum Flow Problem

Let G be a bipartite graph whose vertices are partitioned into sets X and Y . We

create a flow network H such that a maximum flow in H can be immediately con-

verted into a maximum matching in G:

• We begin by including all the vertices of G in H , plus a new source vertex s
and a new sink vertex t.

• Next, we add every edge of G to H , but direct each such edge so that it is

oriented from the endpoint in X to the endpoint in Y . In addition, we insert

a directed edge from s to each vertex in X , and a directed edge from each

vertex in Y to t. Finally, we assign to each edge of H a capacity of 1.

16.3. Maximum Bipartite Matching 459

Given a flow f for H , we use f to define a set M of edges of G using the rule

that an edge e is in M whenever f(e) = 1. (See Figure 16.11.) We now show

that the set M is a matching. Since the capacities in H are all 1, the flow through

each edge of H is either 0 or 1. Moreover, since each vertex x in X has exactly

one incoming edge, the conservation rule implies that at most one outgoing edge of

x has nonzero flow. Similarly, since each vertex y in Y has exactly one outgoing

edge, at most one incoming edge of y has nonzero flow. Thus, each vertex in X
will be paired by M with at most one vertex in Y , that is, set M is a matching.

Also, we can easily see that the size of M is equal to |f |, the value of flow f .

A reverse transformation can also be defined. Namely, given a matching M in

graph G, we can use M to define a flow f for H using the following rules:

• For each edge e of H that is also in G, f(e) = 1 if e ∈ M and f(e) = 0
otherwise.

• For each edge e of H incident to s or t, f(e) = 1 if v is an endpoint of some

edge of M and f(e) = 0 otherwise, where v denotes the other endpoint of e.

It is easy to verify that f is a flow for H and the value of f is equal to the size of M .

Therefore, any maximum flow algorithm can be used to solve the maximum

bipartite matching problem on a graph G with n vertices and m edges. Namely,

1. We construct network H from the bipartite graph G. This step takes O(n +
m) time. Network H has n + 2 vertices and n + m edges.

2. We compute a maximum flow for H using the standard Ford-Fulkerson al-

gorithm. Since the value of the maximum flow is equal to |M |, the size of

the maximum matching, and |M | ≤ n/2, this step takes O(n(n + m)) time,

which is O(nm) because G is connected.

Theorem 16.12: Let G be a bipartite graph with n vertices and m edges. A

maximum matching in G can be computed in O(nm) time.

X Y X Y

s t

H:G:

Figure 16.11: (a) A bipartite graph G. (b) Flow network H derived from G and a

maximum flow in H; thick edges have unit flow and other edges have zero flow.

460 Chapter 16. Network Flow and Matching

16.4 Baseball Elimination

Network flow has a lot of applications, with one of the more surprising being to

a problem that arises in professional sports. Let T be a set of teams in a sports

league, which, for historical reasons, let us assume is baseball. At any point during

the season, each team, i, in T , will have some number, wi, of wins, and will have

some number, gi, of games left to play. The baseball elimination problem is to

determine whether it is possible for team i to finish the season in first place, given

the games it has already won and the games it has left to play. Note that this depends

on more than just the number of games left for team i, however; it also depends on

the respective schedules of team i and the other teams. So let gi,j denote the number

of games remaining between team i and team j, so that

gi =
∑

j∈T

gi,j .

For example, see Table 16.12.

Team Wins Games Left Schedule (gi,j)
i wi gi LA Oak Sea Tex

Los Angeles 81 8 - 1 6 1

Oakland 77 4 1 - 0 3

Seattle 76 7 6 0 - 1

Texas 74 5 1 3 1 -

Table 16.12: A set of teams, their standings, and their remaining schedule. Clearly,

Texas is eliminated from finishing in first place, since it can win at most 79 games.

In addition, even though it is currently in second place, Oakland is also eliminated,

because it can win at most 81 games, but in the remaining games between LA and

Seattle, either LA wins at least 1 game and finishes with at least 82 wins or Seattle

wins 6 games and finishes with at least 82 wins.

With all the different ways for a team, k, to be eliminated, it might at first seem

like it is computationally infeasible to determine whether team k is eliminated.

Still, we can solve this problem by a reduction to a network flow problem. Let T ′

denote the set of teams other than k, that is, T ′ = T − {k}. Also, let L denote the

set of games that are left to play among teams in T ′, that is,

L = {{i, j} : i, j ∈ T ′ and gi,j > 0}.

Finally, let W denote the largest number of wins that are possible for team k given

the current standings, that is, W = wk + gk.

If W < wi, for some team i, then k is eliminated directly by team i. So, let us

assume that no single team eliminates team k. To consider how a combination of

teams and game outcomes might eliminate team k, we create a graph, G, that has

16.4. Baseball Elimination 461

as its vertices a source, s, a sink, t, and the sets T ′ and L. Then, let us include the

following edges in G (see Figure 16.13):

• For each game pair, {i, j}, in L, add an edge (s, {i, j}), and give it capac-

ity gi,j .

• For each game pair, {i, j}, in L, add edges ({i, j}, i) and ({i, j}, j), and

give these edges capacity +∞.

• For each team, i, add an edge (i, t) and give it capacity W−wi, which cannot

be negative in this case, since we ruled out the case when W < wi.

s t

i

j

{i,j}

Game nodes Team nodes

gi,j

+∞ +∞

+∞

+∞

+∞

+∞

W wi

W wj

Figure 16.13: The network, G, to determine whether team k is eliminated.

The intuition behind the construction for G is that wins flow out from the

source, s, are split at each game node, {i, j}, to allocate wins between each pair

of teams, i and j, and then are absorbed by the sink, t. The flow on each edge,

({i, j}, i), represents the number of games in which team i beats j, and the flow on

each edge, (i, t), represents the number of remaining games that could be won by

team i. Thus, maximizing the flow in G is equivalent to testing if it is possible to

allocate wins among all the remaining games not involving team k so that no team

goes above W wins. So we compute a maximum flow for G.

Suppose that the value of this maximum flow is

g(T ′) =
∑

{i,j}⊆T ′

gi,j ,

which is the total number of games to be played by teams in T ′. This implies that

it is possible to allocate wins to all the remaining games so that no team has its win

count go above W , that is, team k is not eliminated. If, on the other hand, the value

of the maximum flow is strictly less than g(T ′), then team k is eliminated, since it

is not possible to allocate wins to all the remaining games with every team having

a win count of at most W . Thus, we have the following:

Theorem 16.13: We can solve the baseball elimination problem for any team in

a set of n teams by solving a single maximum flow problem on a network with at

most O(n2) vertices and edges.

462 Chapter 16. Network Flow and Matching

16.5 Minimum-Cost Flow

There is another variant of the maximum flow problem that applies in situations

where there is a cost associated with sending a unit of flow through an edge. In this

section, we extend the definition of a network by specifying a second nonnegative

integer weight w(e) for each edge e, representing the cost of edge e.

Given a flow f , we define the cost of f as

w(f) =
∑

e∈E

w(e)f(e),

where E denotes the set of edges in the network. Flow f is said to be a minimum-

cost flow if f has minimum cost among all flows of value |f |. The minimum-cost

flow problem consists of finding a maximum flow that has the lowest cost over

all maximum flows. A variation of the minimum-cost flow problem asks to find

a minimum-cost flow with a given flow value. Given an augmenting path π with

respect to a flow f , we define the cost of π, denoted w(π), as the sum of the costs

of the forward edges of π minus the sum of the costs of the backward edges of π.

An augmenting cycle with respect to flow f is an augmenting path whose first

and last vertices are the same. In more mathematical terms, it is a directed cy-

cle γ with vertices v0, v1, . . . , v(k − 1), vk = v0, such that ∆f (vi, vi+1) > 0 for

i = 0, . . . ,k − 1 (see Figure 16.14). The definitions of residual capacity (given

in Section 16.1.2) and cost (given above) also apply to an augmenting cycle. In

addition, note that since it is a cycle, we can add the flow of an augmenting cycle

to an existing flow without changing its flow value.

1/1, 3

s

u

v

t

1/2, 1

1/2, 1

0/3, 1

1/1, 3

0/1, 3

s

u

v

t

1/2, 1

2/2, 1

1/3, 1

1/1, 3

(a) (b)

Figure 16.14: (a) Network with flow f , where each edge e is labeled with

f(e)/c(e), w(e). We have |f | = 2 and w(f) = 8. Augmenting cycle γ =
(s, v, u, s), drawn with thick edges. The residual capacity of γ is ∆f (γ) = 1.

The cost of γ is w(γ) = −1. (b) Flow f ′ obtained from f by pushing one unit

of flow along cycle γ. We have |f ′| = |f | and w(f ′) = w(f) + w(γ)∆f (γ) =
8 + (−1) · 1 = 7.

16.5. Minimum-Cost Flow 463

Adding the Flow from an Augmenting Cycle

The following lemma is analogous to Lemma 16.4, as it shows that a maximum

flow can be changed into another maximum flow using an augmenting cycle.

Lemma 16.14: Let γ be an augmenting cycle for flow f in network N . There

exists a flow f ′ for N of value |f ′| = |f | and cost

w(f ′) = w(f) + w(γ)∆f (γ).

We leave the proof of Lemma 16.14 as an exercise (R-16.13).

A Condition for Minimum-Cost Flows

Note that Lemma 16.14 implies that if a flow f has an augmenting cycle of negative

cost, then f does not have minimum cost. The following theorem shows that the

converse is also true, giving us a condition for testing when a flow is in fact a

minimum-cost flow.

Theorem 16.15: A flow f has minimum cost among all flows of value |f | if and

only if there is no augmenting cycle of negative cost with respect to f .

Proof: The “only-if” part follows immediately from Lemma 16.14. To prove

the “if” part, suppose that flow f does not have minimum cost, and let g be a flow

of value f with minimum cost. Flow g can be obtained from f by a series of

augmentations along augmenting cycles. Since the cost of g is less than the cost of

f , at least one of these cycles must have negative cost.

An Algorithmic Approach for Finding Minimum-Cost Flows

Theorem 16.15 suggests an algorithm for the minimum-cost flow problem based

on repeatedly augmenting flow along negative-cost cycles. We first find a maxi-

mum flow f∗ using the Ford-Fulkerson algorithm or the Edmonds-Karp algorithm.

Next, we determine whether flow f∗ admits a negative-cost augmenting cycle. The

Bellman-Ford algorithm (Section 14.3) can be used to find a negative cycle in time

O(nm). Let w∗ denote the total cost of the initial maximum flow f∗. After each

execution of the Bellman-Ford algorithm, the cost of the flow decreases by at least

one unit. Hence, starting from maximum flow f∗, we can compute a maximum

flow of minimum cost in time O(w∗nm). Therefore, we have the following:

Theorem 16.16: Given an n-vertex flow network N with costs associated with

its m edges, together with a maximum flow f∗, we can compute a maximum flow

of minimum cost in O(w∗nm) time, where w∗ is the total cost of f∗.

We can do much better than this, however, by being more careful in how we

compute augmenting cycles, as we show in the remainder of this section.

464 Chapter 16. Network Flow and Matching

Successive Shortest Paths

In this section, we present an alternative method for computing a minimum-cost

flow. The idea is to start from an empty flow and build up to a maximum flow

by a series of augmentations along minimum-cost paths. The following theorem

provides the foundation of this approach.

Theorem 16.17: Let f be a minimum-cost flow, and let f ′ be a the flow obtained

by augmenting f along an augmenting path π of minimum cost. Flow f ′ is a

minimum-cost flow.

Proof: The proof is illustrated in Figure 16.15.

e
s t

γ

π π

Figure 16.15: Illustrating the proof of Theorem 16.17.

Suppose, for the sake of a contradiction, that f ′ does not have minimum cost.

By Theorem 16.15, f ′ has an augmenting cycle γ of negative cost. Cycle γ must

have at least one edge e in common with path π and traverse e in the direction

opposite to that of π, since otherwise γ would be an augmenting cycle of negative

cost with respect to flow f , which is impossible, since f has minimum cost. Con-

sider the path π̂ obtained from π by replacing edge e with γ − e. The path π̂ is an

augmenting path with respect to flow f . Also path π̂ has cost

w(π̂) = w(π) + w(γ) < w(π).

This contradicts the assumption that π is an augmenting path of minimum cost with

respect to flow f .

Starting from an initial null flow, we can compute a maximum flow of mini-

mum cost by a repeated application of Theorem 16.17 (see Figure 16.16). Given

the current flow f , we assign a weight to the edges of the residual graph Rf as

follows (recall the definition of residual graph from Section 16.2). For each edge

e, directed from u to v, of the original network, the edge of Rf from u to v, de-

noted (u, v), has weight w(u, v) = w(e), while the edge (v, u) from v to u has

weight w(v, u) = −w(e). The computation of a shortest path in Rf can be done

by using the Bellman-Ford algorithm (see Section 14.3) since, by Theorem 16.15,

Rf does not have negative-cost cycles. Thus, we obtain a pseudo-polynomial-time

algorithm (Section 12.6) that computes a maximum flow of minimum cost f∗ in

time O(|f∗|nm).

16.5. Minimum-Cost Flow 465

An example execution of the above algorithm is shown in Figure 16.16.

0/1, 3

s

u

v

t

0/2, 1

0/2, 1

0/3, 1

0/1, 3

2

0

1

3

1, 3

s

u

v

t

2, 1

2, 1

3, 1

1, 3

2

0

1

3

(a) (b)

0/1, 3

s

u

v

t

2/2, 1

2/2, 1

2/3, 1

0/1, 3

3

0

2

5 2, –1s

u

v

t1, 1

1, 3

2, –1

1, 3

2, –1

3

0

2

5

(c) (d)

1/1, 3

s

u

v

t

2/2, 1

2/2, 1

1/3, 1

1/1, 3

1, ±1s

u

v

t2, 1

1, 3

2, ±11, ±3

2, ±1

(e) (f)

Figure 16.16: Example of computation of a minimum-cost flow by successive

shortest-path augmentations. At each step, we show the network on the left and

the residual network on the right. Vertices are labeled with their distance from

the source. In the network, each edge e is labeled with f(e)/c(e), w(e). In the

residual network, each edge is labeled with its residual capacity and cost (edges

with zero residual capacity are omitted). Augmenting paths are drawn with thick

lines. A minimum-cost flow is computed with two augmentations. In the first

augmentation, two units of flow are pushed along path (s, v, u, t). In the second

augmentation, one unit of flow is pushed along path (s, u, v, t).

466 Chapter 16. Network Flow and Matching

Modified Weights

We can reduce the time for the shortest-path computations by changing the weights

in the residual graph Rf so that they are all nonnegative. After the modification,

we can use Dijkstra’s algorithm, which runs in O(m log n) time, instead of the

Bellman-Ford algorithm, which runs in O(nm) time.

We describe now the modification of the edge weights. Let f be the current

minimum-cost flow. We denote with df (v) the distance of vertex v from the source

s in Rf , defined as the minimum weight of a path from s to v in Rf (the cost of an

augmenting path from the source s to vertex v). Note that this definition of distance

is different from the one used in Section 16.2.2 for the Edmonds-Karp algorithm.

Let g be the flow obtained from v by augmenting f along a minimum-cost path.

We define a new set of edge weights w ′ for Rg, as follows (see Figure 16.17):

w ′(u, v) = w(u, v) + df (u) − df (v).

Lemma 16.18: For each edge (u, v) of residual network Rg, we have

w ′(u, v) ≥ 0.

Also, a shortest path in Rg with the modified edge weights w ′ is also a shortest

path with the original edge weights w.

Proof: We distinguish two cases.

Case 1: The edge (u, v) exists in Rf .

In this case, the distance df (v) of v from s is no more than the distance df (u)
of u from s plus the weight w(u, v) of edge (u, v), that is,

df (v) ≤ df (u) + w(u, v).

Thus, we have

w ′(u, v) ≥ 0.

Case 2: The edge (u, v) does not exist in Rf .

In this case, (v, u) must be an edge of the augmenting path used to obtained

flow g from flow f and we have

df (u) = df (v) + w(v, u).

Since w(v, u) = −w(u, v), we have

w ′(u, v) = 0.

Given a path π of Rg from s to t, the cost w ′(π) of π with respect to the modified

edge weights differs from the cost c(π) of π by a constant:

w ′(π) = w(π) + df (s) − df (t) = w(π) − df (t).

Thus, a shortest path in Rg with respect to the original weights is also a shortest

path with respect to the modified weights.

16.5. Minimum-Cost Flow 467

0/1, 3

s

u

v

t

0/2, 1

0/2, 1

0/3, 1

0/1, 3

2

0

1

3

(a)

2, –1s

u

v

t1, 1

1, 3

2, –1

1, 3

2, –1

3

0

2

5

(b)

2, 0s

u

v

t1, 0

1, 1

2, 0

1, 1

2, 0

1

0

1

2

(c)

Figure 16.17: Modification of the edge costs in the computation of a minimum-

cost flow by successive shortest-path augmentations. (a) Flow network Nf with

initial null flow f and shortest augmenting path π1 = (s, v, u, t) with cost w1 =
w(π1) = 3. Each vertex is labeled with its distance df from the source. (Same

as Figure 16.16.b.) (b) Residual network Rg after augmenting flow f by two units

along path π and shortest path π2 = (s, u, v, t) with cost w(π2) = 5. (Same as

Figure 16.16.d.) (c) Residual network Rg with modified edge weights. Path π2 is

still a shortest path. However, its cost is decreased by w1.

468 Chapter 16. Network Flow and Matching

The complete algorithm for computing a minimum-cost flow using the succes-

sive shortest-path method is given in Algorithm 16.18 (MinCostFlow).

Algorithm MinCostFlow(N):

Input: Weighted flow network N = (G, c, w, s, t)
Output: A maximum flow with minimum cost f for N

for each edge e ∈ N do

f(e) ← 0
for each vertex v ∈ N do

d(v) ← 0
stop ← false

repeat

compute the weighted residual network Rf

for each edge (u, v) ∈ Rf do

w ′(u, v) ← w(u, v) + d(u) − d(v)
run Dijkstra’s algorithm on Rf using the weights w ′

for each vertex v ∈ N do

d(v) ← distance of v from s in Rf

if d(t) < +∞ then

// π is an augmenting path with respect to f
// Compute the residual capacity ∆f (π) of π
∆ ← +∞
for each edge e ∈ π do

if ∆f (e) < ∆ then

∆ ← ∆f (e)
// Push ∆ = ∆f (π) units of flow along path π
for each edge e ∈ π do

if e is a forward edge then

f(e) ← f(e) + ∆
else

f(e) ← f(e) − ∆ // e is a backward edge

else

stop ← true // f is a maximum flow of minimum cost

until stop

Algorithm 16.18: Successive shortest-path algorithm for computing a minimum-

cost flow.

We summarize this section in the following theorem:

Theorem 16.19: A minimum-cost maximum flow f for a network with n ver-

tices and m edges can be computed in O(|f |m log n) time.

16.6. Exercises 469

16.6 Exercises

Reinforcement

R-16.1 Show that for a flow f , the total flow out of the source is equal to the total flow

into the sink, that is,
∑

e∈E+(s)

f(e) =
∑

e∈E−(t)

f(e).

R-16.2 Answer the following questions on the flow network N and flow f shown in

Figure 16.6a:

• What are the forward and backward edges of augmenting path π?

• How many augmenting paths are there with respect to flow f? For each

such path, list the sequence of vertices of the path and the residual capacity

of the path.

• What is the value of a maximum flow in N?

R-16.3 Construct a minimum cut for the network shown in Figure 16.4 using the method

in the proof of Lemma 16.5.

R-16.4 Illustrate the execution of the Ford-Fulkerson algorithm in the flow network of

Figure 16.2.

R-16.5 Draw a flow network with 9 vertices and 12 edges. Illustrate an execution of the

Ford-Fulkerson algorithm on it.

R-16.6 Find a minimum cut in the flow network of Figure 16.8a.

R-16.7 Show that, given a maximum flow in a network with m edges, a minimum cut of

N can be computed in O(m) time.

R-16.8 Find two maximum matchings for the bipartite graph of Figure 16.11a that are

different from the maximum matching of Figure 16.11b.

R-16.9 Let G be a complete bipartite graph such that |X| = |Y | = n and for each pair

of vertices x ∈ X and y ∈ Y , there is an edge joining x and y. Show that G has

n! distinct maximum matchings.

R-16.10 Illustrate the execution of the Ford-Fulkerson algorithm in the flow network of

Figure 16.11b.

R-16.11 Illustrate the execution of the Edmonds-Karp algorithm in the flow network of

Figure 16.8a.

R-16.12 Illustrate the execution of the Edmonds-Karp algorithm in the flow network of

Figure 16.2.

R-16.13 Give a proof of Lemma 16.14.

R-16.14 Illustrate the execution of the minimum-cost flow algorithm based on successive

augmentations along negative-cost cycles for the flow network of Figure 16.16a.

470 Chapter 16. Network Flow and Matching

R-16.15 Illustrate the execution of the minimum-cost flow algorithm based on successive

augmentations along minimum-cost paths for the flow network of Figure 16.2,

where the cost of an edge (u, v) is given by |deg(u) − deg(v)|.

R-16.16 Is Algorithm 16.18 (MinCostFlow) a pseudo-polynomial-time algorithm?

Creativity

C-16.1 What is the worst-case running time of the Ford-Fulkerson algorithm if all edge

capacities are bounded by a constant?

C-16.2 Improve the bound of Lemma 16.8 by showing that there are at most nm/4
augmentations in the Edmonds-Karp algorithm.

Hint: Use df (u, t) in addition to df (s, v).

C-16.3 Let N be a flow network with n vertices and m edges. Show how to compute an

augmenting path with the largest residual capacity in O((n + m) log n) time.

C-16.4 Show that the Ford-Fulkerson algorithm runs in time O(m2 log n log |f∗|) when,

at each iteration, the augmenting path with the largest residual capacity is cho-

sen.

C-16.5 You want to increase the maximum flow of a network as much as possible, but

you are only allowed to increase the capacity of one edge.

a. How do you find such an edge? (Give pseudocode.) You may assume

the existence of algorithms to compute max flow and min cut. What’s the

running time of your algorithm?

b. Is it always possible to find such an edge? Justify your answer.

C-16.6 Given a flow network N and a maximum flow f for N , suppose that the capacity

of an edge e of N is decreased by one, and let N ′ be the resulting network. Give

an algorithm for computing a maximum flow in network N ′ by modifying f .

C-16.7 Give an algorithm that determines, in O(n + m) time, whether a graph with n
vertices and m edges is bipartite.

C-16.8 Give an algorithm for computing a flow of maximum value subject to the follow-

ing two additional constraints:

a. Each edge e has a lower bound ℓ(e) on the flow through it.

b. There are multiple sources and sinks, and the value of the flow is computed

as the total flow out of all the sources (equal to the total flow into all the

sinks).

C-16.9 Show that in a flow network with noninteger capacities, the Ford-Fulkerson al-

gorithm may not terminate.

C-16.10 In the context of the baseball elimination problem, one can show that if wi+gi ≤
wk + gk and team k is eliminated, then team i is also eliminated. Use this fact to

show that among a set of n teams, one can determine all the eliminated teams by

solving O(log n) maximum flow problems.

16.6. Exercises 471

C-16.11 A vertex cover for a graph, G, is a set of vertices, C, such that every edge in G
is incident to one of the vertices in C. The problem of finding a smallest vertex

cover is useful in network monitoring and other applications, but it is a difficult

problem for general graphs. Show that the problem of finding a smallest vertex

cover in a bipartite graph can be solved in polynomial time.

Hint: Use the max-flow, min-cut theorem, and the reduction of Section 16.3,

to prove that, for any bipartite graph, G, the number of vertices in a minimum

vertex cover for G equals the number of edges in a maximum matching in G.

Applications

A-16.1 In 2006, the city of Beijing, China, instituted a policy that limits residents to own

at most one dog per household. Imagine you are running an online pet adoption

website for the city. Your website contains pictures of adorable puppies that are

available for adoption, and it allows for dogless Beijing residents to click on as

many puppies as they like, with the understanding that they can adopt at most

one. Suppose now that you have collected the puppy preferences from among

n Beijing residents for your m puppies. Describe an efficient algorithm for as-

signing puppies to residents that provides for the maximum number of puppy

adoptions possible while satisfying the constraints that each resident will only

adopt a puppy that he or she likes and that no resident can adopt more than one

puppy.

A-16.2 The city of Irvine, California, allows for residents to own a maximum of three

dogs per household without a breeder’s license. Imagine you are running an

online pet adoption website for the city, as in the previous exercise, but now

for n Irvine residents and m puppies. Describe an efficient algorithm for as-

signing puppies to residents that provides for the maximum number of puppy

adoptions possible while satisfying the constraints that each resident will only

adopt puppies that he or she likes and that no resident can adopt more than three

puppies.

A-16.3 Consider the previous exercise, but suppose the city of Irvine, California, changed

its dog-owning ordinance so that it still allows for residents to own a maximum

of three dogs per household, but now restricts each resident to own at most one

dog of any given breed, such as poodle, terrier, or golden retriever. Describe an

efficient algorithm for assigning puppies to residents that provides for the max-

imum number of puppy adoptions possible while satisfying the constraints that

each resident will only adopt puppies that he or she likes, that no resident can

adopt more than three puppies, and that no resident will adopt more than one dog

of any given breed.

A-16.4 Imagine that you are working on creating a flow for a set of packets in a me-

dia stream, as described in the introduction to this chapter. So you are given a

network, G, with a source, s, and sink, t, together with bandwidth constraints

on each edge, which indicate the maximum speed that the communication link

represented by that edge can support. As mentioned before, your goal is to pro-

duce a maximum flow from s to t, respecting the bandwidth constraints on the

edges. Suppose now, however, that you also have a bandwidth constraint on each

472 Chapter 16. Network Flow and Matching

router in the network, which specifies the maximum amount of information, in

bits per second, that can pass through that node. Describe an efficient algorithm

for finding a maximum flow in the network, G, that satisfies the bandwidth ca-

pacity constraints on the edges as well as the vertices. What is the running time

of your algorithm?

A-16.5 Suppose, as an interview question, you are told that you have a goat and a wolf

that need to go from a node, s, to a node, t, in a directed acyclic graph, G. To

avoid the wolf eating the goat, their paths must never share an edge. Describe a

polynomial-time algorithm for finding two edge-disjoint paths in G, if such paths

exist, to provide a way for the goat and the wolf to go from s to t without risk to

the goat.

A-16.6 Suppose a friend of yours has created a simulation game based on J.R.R. Tolkien’s

epic The Lord of the Rings. The game environment is Middle Earth, which is

populated by various noble creatures, including hobbits, humans, dwarves, and

elves. Unfortunately, these noble creatures are under attack and need to get to

safe havens, known as “strongholds.” Some strongholds are larger than others,

of course, and each stronghold, s, can only hold some number, Ns, of these crea-

tures. Initially, let us assume each stronghold is empty, and the noble creatures

are living in various regions, with each region, r, containing some number, Nr,

of noble creatures. Moreover, we know, for each region, r, the set of strongholds,

Sr, that can be reached from r in at most three days’ travel. Your job is to fig-

ure out how to move the maximum number of noble creatures possible from the

regions where they currently live to the various strongholds in three days’ time

while not overcrowding any stronghold. Describe and analyze an efficient algo-

rithm to solve this game.

A-16.7 A limousine company must process pickup requests every day, for taking cus-

tomers from their various homes to the local airport. Suppose this company re-

ceives pickup requests from n locations and there are n limos available, where

the distance of limo i to location j is given by a number, dij . Describe an efficient

algorithm for computing a dispatchment of the n limos to the n pickup locations

that minimizes the total distance traveled by all the limos.

Chapter Notes

Ford and Fulkerson’s network flow algorithm (16.2) is described in their book [74]. Ed-

monds and Karp [64] describe two methods for computing augmenting paths that cause the

Ford-Fulkerson algorithm to run faster: shortest augmenting path (Section 16.2.2) and aug-

menting paths with maximum residual capacity (Exercise C-16.4). The minimum-cost flow

algorithm based on successive augmentations along minimum-cost paths (Section 16.5) is

also due to Edmonds and Karp [64].

The reader interested in further study of graph algorithms and flow networks is referred

to the books by Ahuja, Magnanti, and Orlin [10], Even [68], Gibbons [81], Mehlhorn [158],

and Tarjan [207], and the book chapter by van Leeuwen [210]. Schwartz [187] was the first

to show that the baseball elimination problem could be reduced to a maximum flow prob-

lem. Our formulation of the baseball elimination problem follows that of Wayne [215]. For

applications of network flow to social networks, see the book by Easley and Kleinberg [60].

